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What’s the problem?

Robust and Stochastic AC Optimal Power Flow

optimality =
economic efficiency

security against
uncertain injections

Methods to guarantee both chance-constraint feasibility
and optimality subject to non-linear AC constraints?

scalable!



A brief overview of literature on AC OPF with uncertainty

• Worst-case scenario for non-convex AC OPF
• No guarantees due to non-convexity

• Linearization of AC power flow equations
• Accurate only close to linearization point

• Chance-constrained polynomial chaos expansion
• Scalability and good reformulations

• SDP-based chance-constraint reformulations
• Scalability !!!

• Convex relaxation + linearization of voltage products
• Are not exact

• Convex inner approximations
• Does not handle equality constraints = requires controllable injections at every bus

• Convex relaxation + two/multi-stage robust program
• Lower bound (no guarantees)

• Robust bounds on uncertainty impact
• Upper bounds (?)

[Dall’Anese, Baker & Summers ‘16], [Roald & Andersson ‘17],
[Lubin, Dvorkin, Roald, ‘19] …

[Vrakopoulou at al, ‘13], [Venzke et al ‘17]

[Louca & Bitar ‘17], [Misra et al, 2017]

[Nasri, Kazempour, Conejo, & Ghandhari ‘16]
[Phan & Ghosh ‘14], [Lorca & Sun ‘17]

[Capitanescu, Fliscounakis, Panciatici, & Wehenkel ‘12] 

[Molzahn and Roald ‘18], [Molzahn and Roald ‘19]

[Mühlpfort, Roald, Hagenmeyer, Faulwasser & Misra, preprint]

[Weisser, Roald & Misra, preprint]

(There is   
not a lot…)



Outline

• A complicated model

• A simple chance constraint

• Solution approaches



Renewable energy uncertainty

• Changes in power generation 𝒑𝒊𝒏𝒋
due to renewable forecast errors 𝝎:

𝒑𝒊𝒏𝒋 𝝎 = '𝒑𝒊𝒏𝒋 + 𝝎

• Assumptions on 𝜔 :
• Known and finite 𝜇,, Σ,

mean and covariance

• Reactive power changes: 𝒒𝒊𝒏𝒋 𝝎 = '𝒒𝒊𝒏𝒋 + 𝜸𝝎



Network model
• AC power flow equations: Conservation of power at each node 

𝑝2 𝜔 , 𝑞2 𝜔
𝑣 𝜔 , 𝜃2 𝜔



• Affine recourse policy for
active power balancing

• Constant voltage magnitudes
at generators

Recourse actions

(we would like to optimize 𝛼)



AC Optimal Power Flow Formulation
Cost for expected operating point

Generation and voltage
control policies

Generation, voltage and
transmission limits

AC power flow equations
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Chance-constrained AC Optimal Power Flow

AC power flow equationsRobust

Why robust power flow equations?

If the power flow equations are not satisfied, the model does not make sense.



Chance-constrained AC Optimal Power Flow

AC power flow equationsRobust

How robust power flow equations?



Chance-constrained AC Optimal Power Flow

Convex restriction = 
convex inner approximation

Convex quadratic constraints

D Lee, HD Nguyen, K Dvijotham, K Turitsyn, “Convex restriction of AC power flow feasibility set”, arXiv preprint arXiv:1803.00818

D Lee, K Turitsyn, D K Molzahn, L Roald, “Feasible Path Identification in Optimal Power Flow with Sequential Convex Restriction”, https://arxiv.org/abs/1906.09483

How robust power flow equations?
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Chance-constrained AC Optimal Power Flow

ℙ ≥ 1 − 𝜺
ℙ ≥ 1 − 𝜺
ℙ ≥ 1 − 𝜺
ℙ ≥ 1 − 𝜺

Single chance constraints for generation, 
voltage and transmission limits

Why single chance constraints?

Modelling perspective:
Joint – probability of having a 
peaceful afternoon at work
Single – easier to assign risk to 
certain components

Solution perspective:
Joint – computational tractability,
conservativeness
Single – easier, less safe



Chance-constrained AC Optimal Power Flow

ℙ ≥ 1 − 𝜺
ℙ ≥ 1 − 𝜺
ℙ ≥ 1 − 𝜺
ℙ ≥ 1 − 𝜺

Single chance constraints for generation, 
voltage and transmission limits

Why single chance constraints?

Many constraints
~ 16 million for a realistic system 
(Polish test case with security constraints)

High dimensional 𝝎
~ 941 uncertain loads (Polish test case)

Possible to control joint violation 
probability using single constraints



Outline

• A complicated model

• A simple chance constraint

• Solution approaches



Moment-based Reformulation

ℙ 𝑖 𝑥, 𝜔 ≤ 𝑖?@A ≥ 1 − 𝜖

𝝁𝒊(𝒙,𝝎) + 𝜌(𝜖)𝝈𝒊(𝒙,𝝎) ≤ 𝑖?@A

Exact reformulation if 𝜔 ~𝒩 𝜇, , Σ,
and 𝜌 𝜖 = ΦLM(1 − 𝜖)



Moment-based Reformulation

ℙ 𝑖 𝑥, 𝜔 ≤ 𝑖?@A ≥ 1 − 𝜖

𝝁𝒊(𝒙,𝝎) + 𝜌(𝜖)𝝈𝒊(𝒙,𝝎) ≤ 𝑖?@A

Exact reformulation if 𝜔 ~𝒩 𝜇, , Σ,
and 𝜌 𝜖 = ΦLM(1 − 𝜖) Data is NOT normally 

distributed…
[Roald, Oldewurtel, Van Parys & Andersson, arxiv ‘15]

Bad news!



Moment-based Reformulation

ℙ 𝑖 𝑥, 𝜔 ≤ 𝑖?@A ≥ 1 − 𝜖

𝝁𝒊(𝒙,𝝎) + 𝜌(𝜖)𝝈𝒊(𝒙,𝝎) ≤ 𝑖?@A

Exact reformulation if 𝜔 ~𝒩 𝜇, , Σ,
and 𝜌 𝜖 = ΦLM(1 − 𝜖)

In practice, normal distributions seem to 
provide very reasonable approximations

Concentration (?)

Good news!

[Roald, Misra, Krause Andersson, 2017]



Moment-based Reformulation

ℙ 𝑖 𝑥, 𝜔 ≤ 𝑖?@A ≥ 1 − 𝜖

𝝁𝒊(𝒙,𝝎) + 𝜌(𝜖)𝝈𝒊(𝒙,𝝎) ≤ 𝑖?@A

Exact reformulation if 𝜔 ~𝒩 𝜇, , Σ,
and 𝜌 𝜖 = ΦLM(1 − 𝜖)

We can derive (conservative) values for 𝜌(𝜖)
for (families of) non-normal distributions 

which share the mean and covariance 𝜇, , Σ,
Unimodality, … 

Good news!



Interpretability

𝝁𝒊(𝒙,𝝎) + 𝜌(𝜖)𝝈𝒊(𝒙,𝝎) ≤ 𝑖?@A

𝝁𝒊 𝒙,𝝎 ≤ 𝑖?@A − 𝜌(𝜖)𝝈𝒊(𝒙,𝝎)

deterministic
constraint

“uncertainty
margin”

How do I find 𝝁𝒊 𝒙,𝝎
and 𝝈𝒊(𝒙,𝝎)?



1. Linearize the AC power flow

Determininistic
AC OPF solution

Linearization

[Dall’Anese, Baker & Summers ‘16], 
[Lubin, Dvorkin & Roald ‘18], … 

𝑣 𝑥, 𝜔 ≈ 𝑣 𝑥O, 0 + QR
QA
| AT,O (𝑥 − 𝑥O) +

QR
Q,
| AT,O 𝜔

𝜇R 𝑥, 𝜔 ≈ 𝑣 𝑥O, 0 + QR
QA
| AT,O (𝑥 − 𝑥O)

𝜎R 𝑥, 𝜔 ≈ QR
Q,
| AT,O Σ,

QR
Q,
| AT,O
V

Taylor expansion for 𝑥 and 𝜔



2. Partially linearize the AC power flow

AC OPF solution
for 𝜔 = 0

Linearization

[Schmidli, Roald, Chatzivasileiadis and Andersson ‘16] 
[Roald and Andersson ‘18]

𝑣 𝑥, 𝜔 ≈ 𝑣 𝑥, 0 + QR
Q,
| AT,O 𝜔

𝜇R 𝑥, 𝜔 ≈ 𝑣 𝑥, 0
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Q,
| AT,O Σ,
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Q,
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V

Taylor expansion for 𝑥 and 𝜔
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AC OPF solution
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2. Partially linearize the AC power flow

AC OPF solution
for 𝜔 = 0

[Schmidli, Roald, Chatzivasileiadis and Andersson ‘16] 
[Roald and Andersson ‘18]

𝑣 𝑥, 𝜔 ≈ 𝑣 𝑥, 0 + QR
Q,
| AT,O 𝜔

𝜇R 𝑥, 𝜔 ≈ 𝑣 𝑥, 0

𝜎R 𝑥, 𝜔 ≈ QR
Q,
| AT,O Σ,

QR
Q,
| AT,O
V

Taylor expansion for 𝑥 and 𝜔

Linearization



3. Polynomial Chaos Expansion

AC OPF solution
𝑝(𝜔)

[Mühlpfort, Roald, Hagenmeyer, Faulwasser and Misra, 
accepted, ‘19] 

1. Build a polynomial basis based on 
orthogonal polynomials from random 
variables

2. Express power flow and decision 
variables in terms of basis polynomials 
with unknown coefficients

3. Truncate at finite dimension

4. Solve optimal power flow with 
polynomials as constraints



3. Polynomial Chaos Expansion

[Mühlpfort, Roald, Hagenmeyer, Faulwasser and Misra, 
accepted ‘19] 

1. Build a polynomial basis based on 
orthogonal polynomials from random 
variables

2. Express power flow and decision 
variables in terms of basis polynomials 
with unknown coefficients

3. Truncate at finite dimension

4. Solve optimal power flow with 
polynomials as constraints

Similar structure as power flow equations…

JUST MANY MORE!

When can we truncate?



3. Polynomial Chaos Expansion

1. Build a polynomial basis based on 
orthogonal polynomials from random 
variables

2. Express power flow and decision 
variables in terms of basis polynomials 
with unknown coefficients

3. Truncate at finite dimension

4. Solve optimal power flow with 
polynomials as constraints

[Mühlpfort, Roald, Hagenmeyer, Faulwasser and Misra, 
accepted ‘19] 

PCE bases of degree 2 

(quadratic polynomials) already provide good results.



Comparison
1. Linearize the AC power flow

++ Computational speed
- - Inaccuracy

2. Partially linearize the AC power flow
+ Easy to compute moments, 
+ Computational speed
- (less) inaccuracy

3. Polynomial Chaos Expansion
+ Efficient computation of moments 
+ Accuracy
- - Computational tractability 

(limited to small systems/
few uncertainty sources)
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+ Computational speed
- (less) inaccuracy

3. Polynomial Chaos Expansion
+ Efficient computation of moments 
+ Accuracy
- - Computational tractability 

(limited to small systems/
few uncertainty sources)

Provide good approximations.

Linearization error ≈ Distribution error

In-sample testing (normal distribution)

Out-of-sample testing (non-normal)



Comparison
1. Linearize the AC power flow

++ Computational speed
- - Inaccuracy

2. Partially linearize the AC power flow
+ Easy to compute moments, 
+ Computational speed
- (less) inaccuracy

3. Polynomial Chaos Expansion
+ Efficient computation of moments 
+ Accuracy
- - Computational tractability 

(limited to small systems/
few uncertainty sources)

Provide good approximations.

How much better is 

Polynomial Chaos Expansion?



Errors in Polynomial Chaos and Linearized AC

Linearized AC generally at least one order of magnitude larger errors.

Linearized AC introduces errors in estimating the mean!



Errors in Polynomial Chaos and Linearized AC

Linearized AC generally at least one order of magnitude larger errors.

Linearized AC introduces errors in estimating the mean!

Polynomial chaos provides better (but not perfect) approximation of chance constraints.
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• Solution approaches



Interpretation as constraint tightening

𝑖 𝑥, 0 + 𝑓 1 − 𝜀 𝑑𝑖,Σ,𝑑𝑖, ≤ 𝑖?@A

𝑖 𝑥, 0 ≤ 𝑖?@A − 𝑓 1 − 𝜀 𝑑𝑖,Σ,𝑑𝑖,

Deterministic 
constraint

“Uncertainty margin”



Interpretation as constraint tightening

min
]^

∑2∈𝒢 𝑐c,2𝑝d,2c + 𝑐M,2 𝑝d,2 + 𝑐O,2

s.t.
𝑓 𝜃, 𝑣, 𝑝, 𝑞 = 0, ∀ 𝜔 ∈ 𝑈

𝑝d ≤ 𝑝d?@A −ΦLM(1 − 𝜖) ℎ](𝑥)ΣklRℎ] 𝑥 V

𝑝d ≥ 𝑝d?2m + ΦLM(1 − 𝜖) ℎ] 𝑥 ΣklRℎ] 𝑥 V

𝑖 ≤ 𝑖?@A − ΦLM(1 − 𝜖) ℎn 𝑥 ΣklRℎn 𝑥 V

𝑣 ≤ 𝑣?@A −ΦLM(1 − 𝜖) ℎo 𝑥 ΣklRℎo 𝑥 V

𝑣 ≥ 𝑣?2m + ΦLM(1 − 𝜖) ℎo 𝑥 ΣklRℎo 𝑥 V

Deterministic 
constraints

“Uncertainty margins”



An efficient iterative algorithm

• Main idea: Separate optimization and uncertainty assessment

𝑖 𝒙, 0 ≤ 𝑖?@A − 𝜆2

𝜆2 = 𝑓 1 − 𝜀 𝑑𝑖,Σ,𝑑𝑖, Tightening

Initialize: 𝜆2 = 0

Solve deterministic
AC OPF (𝜆2 fixed):

Evaluate tightening 𝜆2
(𝑥 fixed):

Converged to safe solution when 𝜆2q − 𝜆2qLM ≤ 𝜂

Constraint



An efficient iterative algorithm

• Main idea: Separate optimization and uncertainty assessment

𝑖 𝒙, 0 ≤ 𝑖?@A − 𝜆2

𝜆2 = 𝑓 1 − 𝜀 𝑑𝑖,Σ,𝑑𝑖, Tightening

Initialize: 𝜆2 = 0

Solve deterministic
AC OPF (𝜆2 fixed):

Evaluate tightening 𝜆2
(𝑥 fixed):

Converged to safe solution when 𝜆2q − 𝜆2qLM ≤ 𝜂

Use your favorite
AC OPF solver!



An efficient iterative algorithm

• Main idea: Separate optimization and uncertainty assessment

𝑖 𝒙, 0 ≤ 𝑖?@A − 𝜆2

𝜆2 = Robust, Monte Carlo …

Initialize: 𝜆2 = 0

Solve deterministic
AC OPF (𝜆2 fixed):

Evaluate tightening 𝜆2
(𝑥 fixed):

Converged to safe solution when 𝜆2q − 𝜆2qLM ≤ 𝜂

Use any method
for uncertainty
quantification!

Robust bounds on 
uncertainty impact:

𝜆 = max
,∈u

𝑖(𝑥, 𝜔)

[Molzahn and Roald, PSCC ‘18],
[Molzahn and Roald, HICSS ‘18]



An efficient iterative algorithm

• Main idea: Separate optimization and uncertainty assessment
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Evaluate tightening 𝜆2
(𝑥 fixed):

Converged to safe solution when 𝜆2q − 𝜆2qLM ≤ 𝜂

No guarantees for convergence 
[Roald, Molzahn, Tobler ‘17]

No guarantees for optimality

But works surprisingly well!
[Roald and Andersson ‘17]



An efficient iterative algorithm

• Main idea: Separate optimization and uncertainty assessment

𝑖 𝒙, 0 ≤ 𝑖?@A − 𝜆2
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Solve deterministic
AC OPF (𝜆2 fixed):

Evaluate tightening 𝜆2
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Converged to safe solution when 𝜆2q − 𝜆2qLM ≤ 𝜂
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But works surprisingly well!
[Roald and Andersson ‘17]



Practical chance constraint implementation

• Implementation tested on the European Grid!

𝑖 𝒙, 0 ≤ 𝑖?@A − 𝜆2

𝜆2 = Monte Carlo …

Initialize: 𝜆2 = 0

Solve deterministic
AC OPF (𝜆2 fixed):

Evaluate tightening 𝜆2
(𝑥 fixed):

More safe solution than before!

www.e-umbrella.eu




